66 research outputs found

    Numerical methods for the modelling of chip formation

    Get PDF
    The modeling of metal cutting has proved to be particularly complex due to the diversity of physical phenomena involved, including thermo-mechanical coupling, contact/friction and material failure. During the last few decades, there has been significant progress in the development of numerical methods for modeling machining operations. Furthermore, the most relevant techniques have been implemented in the the relevant commercial codes creating tools for the engineers working in the design of processes and cutting devices. This paper presents a review on the numerical modeling methods and techniques used for the simulation of machining processes. The main purpose is to identify the strengths and weaknesses of each method and strategy developed up-to-now. Moreover the review covers the classical Finite Element Method covering mesh-less methods, particle-based methods and different possibilities of Eulerian and Lagrangian approaches.Postprint (author's final draft

    The Double Hierarchy Method: a parallel 3D contact method for the interaction of spherical particles with rigid FE boundaries using the DEM

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s40571-016-0109-4In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027–1032, 2001) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.Peer ReviewedPostprint (author's final draft

    Modeling of surface wear by the particle finite element method: application to tunneling processes

    Get PDF
    This work introduces the advances in the Particle Finite Element Method (PFEM) for the modeling of contact and wear between solid materials. The PFEM is an original conjunction of solution strategies. The method has its foundation on the Lagrangian description of the motion of a continuum medium built from a set of particles with known physical properties. The capabilities of the PFEM makes it very suitable for modeling rapid changing boundaries and moving free surfaces. The method uses a remeshing process combined with the Alpha-shape concept to detect the contacting surface and a finite element mesh for the mechanical computation. A new treatment of contact has been developed for the PFEM scheme, the Contact Constraint Method. When contacting forces are computed, an Archard law is used for the wear calculation. The material parameters govern the coupling of contact and wear between the solid domains. The method has been applied to model tunneling processes. Preliminary results show that the PFEM is a very suitable tool for the simulation of wear. Also for the treatment of several other processes related in the common interaction between solid domains.Postprint (published version

    On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids

    Get PDF
    The purpose of this paper is to study the effect of the bulk modulus on the iterative solution of free surface quasi-incompressible fluids using a mixed partitioned scheme. A practical rule to set up the value of a pseudo-bulk modulus a priori in the tangent bulk stiffness matrix for improving the conditioning of the linear system of algebraic equations is also given. The efficiency of the proposed strategy is tested in several problems analyzing the advantage of the modified bulk tangent matrix with regard to the stability of the pressure field, the convergence rate and the computational speed of the analyses. The technique has been tested on a finite calculus/particle finite element method Lagrangian formulation, but it can be easily extended to other quasi-incompressible stabilized finite element formulations. Copyright (C) 2014 John Wiley & Sons, Ltd.Peer ReviewedPostprint (author's final draft

    Modeling of ground excavation with the particle finite element method

    Get PDF
    The present work introduces a new application of the Particle Finite Element Method (PFEM) for the modeling of excavation problems. PFEM is presented as a very suitable tool for the treatment of excavation problem. The method gives solution for the analysis of all processes that derive from it. The method has a high versatility and a reasonable computational cost. The obtained results are really promising.Postprint (published version

    Performance of mixed formulations for the particle finite element method in soil mechanics problems

    Get PDF
    This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy’s law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.Peer ReviewedPostprint (author's final draft

    PFEM formulation for thermo-coupled FSI analysis: application to nuclear core melt accident

    Get PDF
    The aim of this paper is to present a Lagrangian formulation for thermo-coupled fluid–structure interaction (FSI) problems and to show its applicability to the simulation of hypothetical scenarios of a nuclear core melt accident. During this emergency situation, an extremely hot and radioactive lava-like material, the corium, is generated by the melting of the fuel assembly. The corium may induce collapse of the nuclear reactor devices and, in the worst case, breach the reactor containment and escape into the environment. This work shows the capabilities of the proposed formulation to reproduce the structural failure mechanisms induced by the corium that may occur during a meltdown scenario. For this purpose, a monolithic method for FSI problems, the so-called Unified formulation, is here enhanced in order to account for the thermal field and to model phase change phenomena with the Particle Finite Element Method (PFEM). Several numerical examples are presented. First, the convergence of the thermo-coupled method and phase change algorithm is shown for two academic problems. Then, two complex simulations of hypothetical nuclear meltdown situations are studied in 2D as in 3D.Peer ReviewedPostprint (author's final draft

    Continuous chip formation in metal cutting processes using the Particle Finite Element Method (PFEM)

    Get PDF
    This paper presents a study on the metal cutting simulation with a particular numerical technique, the Particle Finite Element Method (PFEM) with a new modified time integration algorithm and incorporating a contact algorithm capability . The goal is to reproduce the formation of continuous chip in orthogonal machining. The paper tells how metal cutting processes can be modelled with the PFEM and which new tools have been developed to provide the proper capabilities for a successful modelling. The developed method allows for the treatment of large deformations and heat conduction, workpiece-tool contact including friction effects as well as the full thermo-mechanical coupling for contact. The difficulties associated with the distortion of the mesh in areas with high deformation are solved introducing new improvements in the continuous Delaunay triangulation of the particles. The employment of adaptative insertion and removal of particles at every new updated configuration improves the mesh quality allowing for resolution of finer-scale features of the solution. The performance of the method is studied with a set of different two-dimensional tests of orthogonal machining. The examples consider, from the most simple case to the most complex case, different assumptions for the cutting conditions and different material properties. The results have been compared with experimental tests showing a good competitiveness of the PFEM in comparison with other available simulation tools.Peer ReviewedPostprint (published version

    Numerical simulation of penetration problems in geotechnical engineering with the particle finite element method (PFEM)

    Get PDF
    This paper highlights a computational framework for the numerical analysis of saturated soil-structure interaction problems. The variational equations of linear momentum and mass balance are obtained for the large deformation case. These equations are solved using the Particle Finite Element Method. The paper concludes with a benchmark test and the analysis of a penetration test

    Interprétation améliorée des essais de pénétration au cône par la méthode des éléments finis des particules (PFEM)

    Get PDF
    The paper presents an enhanced interpretation of the cone penetration test based on numerical analysis performed using the Particle Finite Element Method (PFEM). This method allows the incorporation of strong non-linearities, notably those associated with the large displacements and strains arising from the process of the penetration of the cone. Realistic constitutive laws can also been used. Undrained CPT tests are analysed using a single phase formulation whereas CPTu tests are examined using a two-phase formulation that allows the computation of pore pressures and the study of partially drained tests. It can be concluded that PFEM provides an efficient and robust method to analyse insertion problems that are ubiquitous in geotechnical engineering.Postprint (published version
    • …
    corecore